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 CURRENTOPINION The clonal evolution of leukemic stem cells in
T-cell acute lymphoblastic leukemia

Cedric S. Tremblay and David J. Curtis

Purpose of review
Recent genome sequencing studies have identified a broad spectrum of gene mutations in T-cell acute
lymphoblastic leukemia (T-ALL). The purpose of this review is to outline the latest advances in our
understanding of how these mutations contribute to the formation of T-ALL.

Recent findings
Aberrant expression of transcription factors that control hematopoiesis can induce an aberrant stem cell-like
program in T-cell progenitors, allowing the emergence of an ancestral or preleukemic stem cell (pre-LSC). In
contrast, gain-of-function mutations of genes involved in signaling pathways regulating T-cell development,
such as NOTCH1, interleukin-7, KIT and FLT3, are insufficient per se to initiate T-ALL but promote pre-LSC
growth independent of the thymic niche. Loss-of-function mutations of epigenetic regulators, such as
DNMT3A, have been identified in T-ALL, but their role in leukemogenesis remains to be defined.

Summary
Relapse is associated with clonal evolution from a population of pre-LSCs that acquire the whole set of
malignant mutations leading to a full-blown T-ALL. Understanding the genetic events that underpin the pre-
LSC will be crucial for reducing the risk of relapse.
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INTRODUCTION
T-cell acute lymphoblastic leukemia (T-ALL) is a
genetically heterogeneous cancer, with 20% of
childhood patients and the majority of adult
patients dying from resistant or relapsed disease
[1]. The prognosis is particularly bleak for patients
with early thymocyte progenitor (ETP)-ALL, which
is characterized by a stem cell-like phenotype
with distinct genetic mutations involving transcrip-
tion factors, epigenetic regulators and signaling
pathways, important for T-cell development [2,3].
Recent sequencing studies of T-ALL have confirmed
the presence of these mutations as well as novel
recurrent mutations in the tumor suppressor
CNOT3, ribosomal proteins (RPL5 and RPL10) and
in the setting of relapse, the NT5C2 gene, which
inactivates nucleoside-analogue chemotherapy
drugs [4,5]. One interesting observation is that the
number and type of mutations is age dependent.
Mutations of genes involved in hematopoietic stem
cell (HSC) development, such as SCL and MYB [6],
and ribosomal function, such as RPL5 and RPL10 [4],
are almost exclusively present in childhood T-ALL.
In contrast, adult T-ALL have on average twice as

many mutations, with those involving TLX1,
FBXW7, CNOT3 and PHF6 occurring almost exclu-
sively in older patients [4]. The difference in muta-
tional profile may reflect differences in cell of origin:
prenatal versus natal and T-cell progenitor versus
HSC.

An important study by the Ferrando group,
which sequenced a small number of matched diag-
nostic and relapsed T-ALL samples, elegantly sup-
ports the data for B-cell ALL [7] wherein the clone
responsible for relapse frequently arises from an
ancestral or preleukemic stem cell (pre-LSC) that
harbors some but not all of the mutations in the
diagnostic clone [5]. Further studies in T-ALL are
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required to characterize clonal evolution, but the
scenario is likely to be similar to human acute
myeloid leukemia, wherein the existence of pre-
LSCs with mutations of epigenetic regulators, such
as DNMT3A, have been demonstrated by deep-
targeted sequencing of diagnostic, remission and
relapsed samples [8,9&&]. Clonal diversity appears
to be recapitulated in xenografts of T-ALL in immu-
nodeficient mice, suggesting that mouse models
may be an alternate method to understand the
drivers of pre-LSCs and determine whether targeting
these cells can prevent relapse [10]. For the purpose
of this review, we functionally define the pre-LSC as
a cell containing the initiating genetic event that
confers self-renewal capacity, such that it can prop-
agate leukemia in immunodeficientmice aftermany
months. In contrast, leukemic stem cells (LSCs) are
derived from pre-LSCs after acquiring additional
genetic events that allow them to rapidly (weeks)
generate leukemia in immunodeficientmice (Fig. 1).
Now that the recurrent genetic mutations of T-ALL
have been largely identified, amajor question is how
these mutations contribute to T-ALL: specifically
which ones can initiate disease and in which cell
type, HSC or T-cell progenitor. A better understand-
ing of the role of these mutations is crucial for
designing new therapeutic approaches to success-
fully target the pre-LSC for curing T-ALL.

CREATING PRELEUKEMIC STEM CELLS BY
THE BASIC HELIX–LOOP–HELIX
TRANSCRIPTION FACTOR COMPLEX
Recent transcript and genome sequencing studies
have identified known and a number of new chro-
mosomal rearrangements in T-ALL [11]. These re-
arrangements lead to aberrant T-cell expression of a
broad range of transcription factors, including the
basic helix–loop–helix (bHLH) factors SCL/TAL1,
LYL1 and MYC; LIM-only domain cofactors, such

as LMO1 and LMO2; the homeobox genes TLX1/
HOX11, TLX3/HOX11L2, NKX2.1, NKX2.2,
NKX2.5 and HOXA; and MYB, TAN1 and MEF2C
[1,3,12]. Gene expression profiling shows that these
oncogenes are associated with distinct T-ALL sub-
groups with the poor prognosis, immature T-ALL
subgroup defined by high expression of LMO2, LYL1
and rearrangements of MEF2C [11]. It remains
unclear why different transcription factors are
implicated in distinct subgroups of T-ALL although
it may relate to the origin of the malignancy as
elegantly demonstrated by the use of amousemodel
that utilized stage-specific transposon mutagenesis
[13].

Many of these oncogenes are aberrantly acti-
vated in T-cell development by juxtaposition near
cis-regulatory elements of T-cell receptor genes or by
removal of negative regulatory elements from the
oncogene promoter [14]. A recent comprehensive
analysis of breakpoint sites suggests that most occur
by erroneous repair of double-strand breaks rather
than mistargeting of the V(D)J recombination
machinery [15]. The LMO2 locus is also a hot-spot
for g-retroviral vector insertion, most recently
reported in gene therapy trials for Wiskott–Aldrich
syndrome [16].

Direct experimental evidence that these trans-
cription factors can initiate T-ALL is relatively
limited. To our knowledge, the only transcription
factors shown to be capable of establishing pre-LSCs
from T-cell progenitors are those forming the bHLH
complex (SCL/TAL1, LYL1, LMO1 and LMO2).
Using transgenic mouse models with T-cell specific
promoters, enforced expression of these factors
confers aberrant self-renewal of T-cells, which estab-
lishes a pool of cells that can acquire the additional
gene events required for progression to overt T-ALL
[17–19].

Several potential targets of the bHLH complex
that might contribute to its ability to induce a self-
renewal program have been proposed in recent
studies. Using a new LMO2 transgenicmousemodel,
Smith et al. [20] demonstrated that one important
transcriptional target for LMO2 is the homeobox
gene HHEX. In this study, conditional inactivation
of Hhex markedly attenuated the development of
T-ALL. Chromatin immunoprecipitation of the SCL/
TAL1 complex in T-ALL cells has identified a core
regulatory transcriptional complex that includes
not only LMO1/2 but also GATA3 and RUNX1
[21&]. This feed-forward regulatory loop recapitu-
lates a similar scenario observed in normal HSCs
[22]. Interestingly, mutations of both GATA3 and
RUNX1 have been identified in T-ALL, but how
these affect the function of the SCL/TAL1 regulatory
complex is unknown. Finally, microRNAs may be

KEY POINTS

! Pre-LSCs are ancestral cells within the leukemia
responsible for relapse.

! Mutations of transcription factors can generate
pre-LSCs.

! Activating mutations of signaling pathways important
for T-cell development allow pre-LSCs to expand and
escape the thymic niche.

! Mutations of epigenetic regulators are commonly found
in T-ALL but how they contribute to leukemogenesis
remains to be defined.
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important targets of the bHLH complex that
could initiate a self-renewal program [23&,24]. For
example, SCL/TAL1 could promote expression of
miR-223, which can target the E3 ubiquitin ligase
FBXW7, thereby reducing proteosomal degradation
of a host of known T-ALL oncogenes, including
NOTCH1, MYB, MYC and CYCLIN E [23&]. Consist-
ent with the role of thesemaster regulators to induce
a stem cell identity, the LMO2 complex has been
shown to bind the miR-223 promoter in normal
human CD34þ stem cells [25].

ROLE OF OTHER TRANSCRIPTION
FACTORS
Much less is known about how aberrant expression
of transcription factors other than the bHLH com-
plex initiate T-ALL. In part, this lack of understand-
ing reflects the limited number of T-cell-specific
models of these oncogenic factors. Transgenic

models of transcription factors that induce a more
mature T-ALL, such as TLX1 driven off the LCK
promoter, have been recently reported [26]. Here,
mice develop an aneuploid and mature T-ALL akin
to the human TLX subtype, but definitive thymo-
cyte transplant experiments from young mice have
not been performed to determine whether TLX1 can
directly induce self-renewal of T-cell progenitors.
In the case of c-Myc, Loosveld et al. [27] recently
showed that increased expression of c-Myc in T-cell
progenitors following a sporadic V(D)J rearrange-
ment was insufficient to initiate leukemia in a trans-
genic mouse .

ROLE OF EPIGENETIC REGULATORS IN T-
CELL ACUTE LYMPHOBLASTIC LEUKEMIA
Whole-exome sequencing studies in T-ALL have
recently identified recurrent loss-of-function
mutations in DNA (cytosine-5)-methyltransferase
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FIGURE 1. A hierarchical model of T-ALL proposing the contribution of different mutations to the leukemogenic process.
(A) Genetic lesions inducing the ectopic expression of transcription factors induce the expression of a stem cell-like gene
signature in the immature T-cell progenitors to generate the preleukemic stem cells (pre-LSCs). (B) Self-renewal of pre-LSCs
allows acquisition of mutations in epigenetic regulators to form leukemic stem cells (LSCs). (C) The acquisition of activating
mutations in cytokine signaling pathways promotes clonal expansion of LSCs, which can now escape from the thymic niche to
generate overt T-ALL. T-ALL, T-cell acute lymphoblastic leukemia.
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3A (DNMT3A) and genes coding for members of
the Polycomb Repressive Complex 2 (PRC2) [1,28].
Methylation of cytosine at the 5-position (5mC) in
CpG islands byDNMT3A is associatedwith transcrip-
tional silencing [29].Conditionalknockout studies in
normal HSCs suggest that DNMT3A is required for
differentiation by silencing stem cell genes [30].
Consistent with a role for DNMT3A in silencing
the stem cell program, DNMT3A mutation is associ-
ated with improved HSC function, a differentiation
block and hypomethylation of genomic regions
containing genes frequently overexpressed in leuke-
mias [30,31]. Recent clonal evolution studies found
that DNMT3A loss of function arises early in leuke-
mogenesis [9&&,32–35]. Although speculative, it is
possible that loss-of-function mutations ofDNMT3A
in immature thymocytes may be sufficient to gener-
ate pre-LSCs. Alternatively, long-lived HSCs with
DNMT3A mutations might give rise to T-ALL if they
acquire a second mutation that favors T-cell leuke-
mia.

Homozygous or heterozygous loss-of-function
mutations of EZH2 and SUZ12, components of
PRC2, are observed in 25% of all T-ALL [36&&]. The
PRC2 complex is the writer of the predominant
repressive histone modification H3K27me3. Con-
sistent with a tumor suppressor role, conditional
deletion of EZH2 in HSCs using the inducibleMxCre
transgene was sufficient to induce T-ALL develop-
ment [37]. However, unlike DNMT3A, loss of PRC2
function leads to loss of HSC activity [38,39]. There-
fore, it seems unlikely that mutations of PRC2 com-
plex are capable of inducing self-renewal of T-cells.
Mutations of the PRC2 complex frequently cooccur
with activating mutations of Notch1, suggesting
they cooperate. Indeed, Notch binding in T-ALL
overlaps most closely with PRC2 binding sites,
suggesting that loss of PRC2 repressor function in
T-ALL reinforces the gene activation by Notch1
[36&&,40]. Accordingly, T-ALL with mutations of
Notch and PRC2 may be responsive to inhibitors
of H3K27 demethylases.

SIGNALING PATHWAYS NETWORK
INVOLVED IN T-CELL ACUTE
LYMPHOBLASTIC LEUKEMIA
PROGRESSION
T-cell development is tightly regulated by cytokines,
such as IL-7, FLT3-ligand, SCF (KIT-ligand) and
DLL (NOTCH ligands), produced by the thymic
microenvironment [41]. Somatic gain-of-function
mutations of IL-7R-a, which are more common in
ETP-ALL, are associated with constitutive IL-7 sig-
naling and increased proliferation in T-ALL samples
[3,42–44]. However, recent in-vivo studies suggest
that activating IL-7 signaling in T-cell progenitors is

insufficient to initiate leukemia [45&&]. To address
the oncogenic potential of IL-7R-a mutations,
Yokoyama et al. [45&&] retrovirally transduced HSCs
and different hematopoietic progenitors using an
IL-7R-a chain mutant previously identified in a
T-ALL cell line. Overexpression of mutant IL-7R-a
in T-cell progenitors did not induce T-ALL, whereas
constitutive activation of IL-7 signaling in trans-
duced HSCs caused oligoclonal myeloproliferative
disease, indicating that IL-7R-a mutations alone are
not sufficient to initiate leukemia. In contrast, acti-
vation of IL-7 signaling can synergize with other
mutations to expand the pool of leukemic cells,
thereby accelerating the development of T-ALL [46].

Activating mutations of the Notch signaling
pathway are found in over 60% of T-ALLs [47].
Mutations are likely to be secondary events because
constitutive activation of Notch signaling is unable
to induce self-renewal of T-cell progenitors [18,48–
51]. Rather, activation of Notch expands the LSC
pool by multiple mechanisms, including activation
and stabilization of c-Myc [52,53&&], the phosphoi-
nositide 3-kinase/Akt/mammalian target of rapamy-
cin pathway [48,54] and cyclin-dependent kinases,
CDK4 and CDK6 [55]. Targeting each of these path-
ways downstream of Notch has been shown to have
therapeutic potential either alone or in combination
with Notch inhibitors [40,48,53&&,56,57]. A recent
study by Kelliher’s group also showed that MYC
silencing using shRNAs and inhibition using BET
bromodomain 4 (Brd4) inhibitor reduced the fre-
quency of LSCs, measured by the engraftment of
leukemic cells in transplanted recipients [58]. These
results strongly suggest that mutations leading to
constitutive NOTCH1 signaling and increased MYC
expression are important for the maintenance of
LSCs, but are not sufficient to induce leukemogen-
esis. Given these cytokine signals are provided by
the thymic microenvironment, it seems likely that
gain-of-function mutations in these signaling path-
ways allow pre-LSCs to escape the confines of the
niche necessary for overt T-ALL [59].

Although activatingmutations ofmost signaling
pathways do not appear to be capable of initiating
T-ALL, one exception may be the RAS signaling
pathway that is most commonly mutated in ETP-
ALL [1,3,60]. NRas overexpression confers an aber-
rant self-renewal potential to multipotent pro-
genitors [61] and induces T-cell expansion [62],
suggesting that oncogenic RAS could potentially
generate pre-LSCs of T-cell origin.

CONCLUSION
The recent identification of pre-LSCs in human
acute myeloid leukemia and their importance in
relapse argues that understanding the genetic events
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involved in the initiation of T-ALL is not merely an
academic exercise but may be essential for improv-
ing outcomes in patients with T-ALL. The strongest
evidence currently lies with the bHLH transcription
factors, which can generate pre-LSCs from T-cell
progenitors. The self-renewal of these pre-LSCs
allows them to acquire other mutations, such as
signaling pathways involved in T-cell differen-
tiation, which on their own are insufficient to
initiate the leukemic program but allow growth of
pre-LSCs independent of the thymic microenviron-
ment. Although therapies targeting thosemutations
that expand LSCs may have therapeutic efficacy,
targeting the pre-LSC may for long-term cures.
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